首页> 外文OA文献 >Two simple finite element methods for Reissner-Mindlin plates with clamped boundary condition
【2h】

Two simple finite element methods for Reissner-Mindlin plates with clamped boundary condition

机译:约束边界条件的Reissner-Mindlin板的两种简单有限元方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present two simple finite element methods for the discretization of Reissner-Mindlin plate equations with clamped boundary condition. These finite element methods are based on discrete Lagrange multiplier spaces from mortar finite element techniques. We prove optimal a priori error estimates for both methods. The first approach is based on a so-called standard Lagrange multiplier space for the mortar finite element method, where the Lagrange multiplier basis functions are continuous. The second approach is based on a so-called dual Lagrange multiplier space, where the Lagrange multiplier basis functions are discontinuous. The advantage of using the second approach is that easy static condensation of degrees of freedom corresponding to the Lagrange multiplier is possibly leading to a symmetric positive definite formulation.
机译:我们提出了两种简单的有限元方法,用于约束边界条件下的Reissner-Mindlin板方程的离散化。这些有限元方法是基于研钵有限元技术的离散Lagrange乘子空间。我们证明了这两种方法的最优先验误差估计。第一种方法基于用于灰浆有限元方法的所谓标准拉格朗日乘数空间,其中拉格朗日乘数基函数是连续的。第二种方法基于所谓的双Lagrange乘子空间,其中Lagrange乘子基函数是不连续的。使用第二种方法的优点是,对应于拉格朗日乘数的自由度的容易静态凝结可能导致对称的正定公式。

著录项

  • 作者

    Lamichhane, Bishnu P.;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号